背景
高并發(fā)的場景下,經(jīng)常會出現(xiàn)并發(fā)重復(fù)請求資源的情況。
比如說,緩存失效時,我們?nèi)フ埱骴b獲取最新的數(shù)據(jù),如果這個key是一個熱key,那么在緩存失效的瞬間,可能會有大量的并發(fā)請求訪問到db,導(dǎo)致db訪問量陡增,甚至是打崩db,這種場景也就是我們常說的緩存擊穿。
并發(fā)請求資源
針對同一個key的并發(fā)請求,這些請求和響應(yīng)實(shí)際上都是一樣的。所以我們可以把這種并發(fā)請求優(yōu)化為:只進(jìn)行一次實(shí)際請求去訪問資源,然后得到實(shí)際響應(yīng),所有的并發(fā)請求共享這個實(shí)際響應(yīng)的結(jié)果
針對分布式場景,我們可以使用分布式鎖來實(shí)現(xiàn)
針對單機(jī)場景,我們可以使用singleflight來實(shí)現(xiàn)
singleflight
singleflight
singleflight是golang內(nèi)置的一個包,這個包提供了對重復(fù)函數(shù)調(diào)用的抑制功能,也就是保證并發(fā)請求只會有一個實(shí)際請求去訪問資源,所有并發(fā)請求共享實(shí)際響應(yīng)。
使用
singleflight在golang sdk源碼中的路徑為:src/internal/singleflight
但是internal是golang sdk內(nèi)部的包,所以我們不能直接去使用
使用步驟:
引入go mod
go get golang.org/x/sync
使用singleflight包
singleflight包主要提供了三個方法
// 方法作用:保證并發(fā)請求只會執(zhí)行一次函數(shù),并共享實(shí)際響應(yīng)// 請求參數(shù)// key:請求的唯一標(biāo)識,相同的key會被視為并發(fā)請求// fn:實(shí)際需要執(zhí)行的函數(shù)// 響應(yīng)參數(shù)// v:實(shí)際執(zhí)行函數(shù)的返回值// err:實(shí)際執(zhí)行函數(shù)的錯誤// shared:返回值v是否被共享,若存在并發(fā)請求,則為true;若不存在并發(fā)請求則為falsefunc (g *Group) Do(key string, fn func() (any, error)) (v any, err error, shared bool)// 方法作用:和Do類似,不過方法返回的是chanfunc (g *Group) DoChan(key string, fn func() (any, error)) (<-chan Result, bool)// 方法作用:刪除key,一般來說不會直接使用這個方法func (g *Group) ForgetUnshared(key string) bool
針對以上的三個方法,我們重點(diǎn)了解一下Do方法的使用即可
沒有使用singleflight之前
package mainimport ( “fmt” “sync” “testing” “time”)var ( mx sync.Mutex wg sync.WaitGroup cacheData = make(map[string]string, 0))func TestSingleFlight(t *testing.T) { // 添加10個任務(wù),模擬并發(fā)請求 wg.Add(10) for i := 0; i < 10; i++ { go getData("demo") } // 等待所有任務(wù)完成 wg.Wait()}func getData(key string) { data, _ := getDataFromCache(key) if len(data) == 0 { // 緩存沒有找到,則進(jìn)行回源 data, _ = getDataFromDB(key) // 設(shè)置緩存 mx.Lock() cacheData[key] = data mx.Unlock() } fmt.Println(data) // 任務(wù)完成 wg.Done()}func getDataFromCache(key string) (string, error) { return cacheData[key], nil}func getDataFromDB(key string) (string, error) { fmt.Println("getDataFromDB key: ", key) // 模擬訪問db的耗時 time.Sleep(10 * time.Millisecond) return "db data", nil}
執(zhí)行TestSingleFlight函數(shù)后,會發(fā)現(xiàn)并發(fā)請求多次調(diào)用了getDataFromDB函數(shù)
使用singleflight之后
package mainimport ( “fmt” “golang.org/x/sync/singleflight” “sync” “testing” “time”)var ( mx sync.Mutex wg sync.WaitGroup g singleflight.Group cacheData = make(map[string]string, 0))func TestSingleFlight(t *testing.T) { // 添加10個任務(wù) wg.Add(10) for i := 0; i < 10; i++ { go getDataSingleWarp("demo") } // 等待所有任務(wù)完成 wg.Wait()}func getDataSingleWarp(key string) { data, _ := getDataFromCache(key) if len(data) == 0 { // 使用singleflight來避免并發(fā)請求,實(shí)際改動就這一行 d, _, shared := g.Do(key, func() (interface{}, error) { return getDataFromDB(key) }) fmt.Println(shared) data = d.(string) // 設(shè)置緩存 mx.Lock() cacheData[key] = data mx.Unlock() } fmt.Println(data) wg.Done()}func getDataFromCache(key string) (string, error) { return cacheData[key], nil}func getDataFromDB(key string) (string, error) { fmt.Println("getDataFromDB key: ", key) // 模擬訪問db的耗時 time.Sleep(10 * time.Millisecond) return "db data", nil}
執(zhí)行TestSingleFlight函數(shù)后,會發(fā)現(xiàn)只調(diào)用了一次getDataFromDB函數(shù)
源碼分析
- Group struct:封裝并發(fā)請求
- call struct:每一個需要執(zhí)行的函數(shù),都會被封裝成一個call
- func Do:對并發(fā)請求進(jìn)行控制的方法
// Copyright 2013 The Go Authors. All rights reserved.// Use of this source code is governed by a BSD-style// license that can be found in the LICENSE file.// Package singleflight provides a duplicate function call suppression// mechanism.package singleflight // import “golang.org/x/sync/singleflight”import ( “bytes” “errors” “fmt” “runtime” “runtime/debug” “sync”)// errGoexit indicates the runtime.Goexit was called in// the user given function.var errGoexit = errors.New(“runtime.Goexit was called”)// A panicError is an arbitrary value recovered from a panic// with the stack trace during the execution of given function.type panicError struct { value interface{} stack []byte}// Error implements error interface.func (p *panicError) Error() string { return fmt.Sprintf(“%v%s”, p.value, p.stack)}func newPanicError(v interface{}) error { stack := debug.Stack() // The first line of the stack trace is of the form “goroutine N [status]:” // but by the time the panic reaches Do the goroutine may no longer exist // and its status will have changed. Trim out the misleading line. if line := bytes.IndexByte(stack[:], ”); line >= 0 { stack = stack[line+1:] } return &panicError{value: v, stack: stack}}// call is an in-flight or completed singleflight.Do calltype call struct { // 保證相同key,只會進(jìn)行一次實(shí)際請求 // 相同key的并發(fā)請求會共享返回 wg sync.WaitGroup // These fields are written once before the WaitGroup is done // and are only read after the WaitGroup is done. // 實(shí)際執(zhí)行函數(shù)的返回值和錯誤 val interface{} err error // forgotten indicates whether Forget was called with this call’s key // while the call was still in flight. // 是否已刪除當(dāng)前并發(fā)請求的key forgotten bool // These fields are read and written with the singleflight // mutex held before the WaitGroup is done, and are read but // not written after the WaitGroup is done. // 并發(fā)請求的次數(shù) dups int chans []chan 0}// DoChan is like Do but returns a channel that will receive the// results when they are ready.//// The returned channel will not be closed.func (g *Group) DoChan(key string, fn func() (interface{}, error)) <-chan Result { ch := make(chan Result, 1) g.mu.Lock() if g.m == nil { g.m = make(map[string]*call) } if c, ok := g.m[key]; ok { c.dups++ c.chans = append(c.chans, ch) g.mu.Unlock() return ch } c := &call{chans: []chan 0 { go panic(e) select {} // Keep this goroutine around so that it will appear in the crash dump. } else { panic(e) } } else if c.err == errGoexit { // Already in the process of goexit, no need to call again } else { // Normal return for _, ch := range c.chans { ch 0} } } }() // 匿名函數(shù)立即執(zhí)行 func() { defer func() { if !normalReturn { // Ideally, we would wait to take a stack trace until we've determined // whether this is a panic or a runtime.Goexit. // // Unfortunately, the only way we can distinguish the two is to see // whether the recover stopped the goroutine from terminating, and by // the time we know that, the part of the stack trace relevant to the // panic has been discarded. if r := recover(); r != nil { c.err = newPanicError(r) } } }() // 執(zhí)行實(shí)際函數(shù) c.val, c.err = fn() // 正常返回 normalReturn = true }() if !normalReturn { recovered = true }}// Forget tells the singleflight to forget about a key. Future calls// to Do for this key will call the function rather than waiting for// an earlier call to complete.func (g *Group) Forget(key string) { g.mu.Lock() if c, ok := g.m[key]; ok { c.forgotten = true } delete(g.m, key) g.mu.Unlock()}